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( Introduction |

e In logical anomalies, each image element (e.g., patch) may be
normal even when their combination is anomalous.
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e Similarly, time-series anomalies may results from an unseen
combination of normal local elements

e \We detect such anomalies, representing each sample as a sef of
its local elemets

Using Sets: Beyond Average-Pooling W
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e Histogram features: We project the data to random axes, f' = Pf
and use histogram occupancy along these axes as our features

e Anomaly scoring: For each test image we use the mahalanobis
distance from the test set of the kNN normal sets.

Set Features for Fine-grained Anomaly Detection
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Describing Samples as Sets

MVTec LOCO Results

e Image Element Feature extractor: Alarge ResNet pretrained

on ImageNet for image patches

e Time-Series Element Feature extractor: we take pyramids of
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ST SINBAD
689 818 777 810  96.5+0.1
829 919 837 1000  96.6 + 0.1
595 605 622 975  83.4+3.0
555 468 553 560  78.6+0.1
654 738 633 897  893+0.2
664 710 690 8.0  88.9+ 0.6

Time-Series Results

DAG GOAD DROCC NeuTralL Ours

EPSY 122 76.7 85.8 92.6 98.1
NAT 78.9 87.1 87.2 94.5 96.1
SAD 80.9 94.7 85.8 98.9 97.8
B4 89.8 91.7 9>.3 99.3 99.7
RS 1.0 199 80.0 86.5 92.3
Avg. 74.6 87.2 86.8 94.4 96.8




