

Introduction

- In logical anomalies, each image element (e.g., patch) may be normal even when their combination is anomalous.
- Similarly, time-series anomalies may results from an unseen combination of normal local elements
- We detect such anomalies, representing each sample as a set of its local elemets

- Histogram features: We project the data to random axes, f' = Pfand use histogram occupancy along these axes as our features
- Anomaly scoring: For each test image we use the mahalanobis distance from the test set of the kNN normal sets.

Set Features for Fine-grained Anomaly Detection Niv Cohen, Issar Tzachor & Yedid Hoshen The Hebrew University of Jerusalem

Describing Samples as Sets

• Image Element Feature extractor: A large ResNet pretrained on ImageNet for image patches

• Time-Series Element Feature extractor: we take pyramids of windows at different strides around each time ste

- Breakfast box Juice bottle Pushpins Screw bag Splicing connectors
- 3 Avg. Logical

Time-Series Results						
	DAG	GOAD	DROCC	NeuTraL	Ours	
EPSY	72.2	76.7	85.8	92.6	98.1	
NAT	78.9	87.1	87.2	94.5	96.1	
SAD	80.9	94.7	85.8	98.9	97.8	
CT	89.8	97.7	95.3	99.3	99.7	
RS	51.0	79.9	80.0	86.5	92.3	
Avg.	74.6	87.2	86.8	94.4	96.8	

MVTec LOCO Results

	1/2-1			
ST	SPADE	PCore	GCAD	SINBAD
68.9	81.8	77.7	87.0	96.5 ± 0.1
82.9	91.9	83.7	100.0	96.6 ± 0.1
59.5	60.5	62.2	97.5	83.4 ± 3.0
55.5	46.8	55.3	56.0	$\textbf{78.6} \pm \textbf{0.1}$
65.4	73.8	63.3	89.7	89.3 ± 0.2
66.4	71.0	69.0	86.0	$\textbf{88.9} \pm \textbf{0.6}$